The Impact of Climate Condition on the Optimal Operation of Direct Coupled Photovoltaic Solar-Vehicle Systems

In a photovoltaic solar-vehicle system, many factors may present disturbances and thus affect its operation. Among the disturbing parameters are the variable output voltage of the photovoltaic generator (GPV) and unbalanced irradiation throughout a day, as well as both the variable load (considered as a resistor in our case) and duty cycle. For a better quality output voltage, the optimization of the transfer power, and the protection of the photovoltaic solar vehicle system, the following is required: a constant and non-oscillating tension in the continuous bus and the extraction of the maximum power generated by the photovoltaic array under variable climatic conditions, as well as a specific model of boost converter. This paper discusses the optimization of the transfer power between the photovoltaic array and load in the first step, the study of an average model of the direct current/direct current (DC/DC) converter, and finally the design of a stable and robust tension controller. The results achieved confirm the rightness of the proposed control structure, which is simple, robust, and can secure the stability and good quality dynamics of the controlled system, as well as ensure invariance against disturbances. Also, the average model of the DC/DC converter used was found to be efficient.

Explore full text

More information: (registering DOI)

Journal reference: Energies 2018

Provided by: MDPI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s